|                    | $C_{12}H_{16}N_2S_2$ |               | $[Ni(C_{12}H_{15}N_2S_2)_2]$ |          |
|--------------------|----------------------|---------------|------------------------------|----------|
|                    | (I)                  | (II) <b>*</b> | (I)                          | (II)     |
| S(1)-C(2)          | 1.675 (6)            | 1.675 (8)     | 1.75 (2)                     | 1.73 (1) |
| S(2) - C(1)        | 1.639 (6)            | 1.635 (8)     | 1.71(2)                      | 1.71(1)  |
| N(1)C(2)           | 1.408 (7)            | 1.430 (10)    | 1.29 (3)                     | 1.34 (2) |
| N(1)—C(1)          | 1.365 (7)            | 1.359 (9)     | 1.27 (3)                     | 1.29 (2) |
| N(2)—C(2)          | 1.335 (7)            | 1.310 (10)    | 1.41 (3)                     | 1.35 (2) |
| S(1)-C(2)-N(1)     | 119.0 (4)            | 117.8 (7)     | 129 (2)                      | 130(1)   |
| C(2) - N(1) - C(1) | 123-3 (5)            | 123.5 (6)     | 127 (2)                      | 127 (1)  |
| S(2)—C(1)—N(1)     | 123-9 (4)            | 123.3 (6)     | 134 (2)                      | 132 (1)  |

Table 3. Comparison of selected bond lengths (Å) and angles (°) of the ligand and the corresponding nickel chelate, [Ni(C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>S<sub>2</sub>)<sub>2</sub>] (Sieler et al., 1985)

\* Mean value of the two independent molecules.

As in (I), C(1)-S(2) is about 0.04 Å shorter than C(2)-S(1) which corresponds to distances in thioureas (Kunchur & Truter, 1958; Elcombe & Taylor, 1968; Dias & Truter, 1964) and thioamides (Truter, 1960; Walter, Harto & Voss, 1976).

The C(1)-N(1), C(2)-N(1) and C(2)-N(2) bonds are again intermediate between single and double bonds. C(5)-C(6) (mean value 1.44 Å) is slightly shorter and N(2)-C(5) (mean value 1.52 Å) is longer than the expected values of 1.54 and 1.47 Å (Pauling, 1968). Deviations of this kind are already known from *N*-benzoylthiourea chelates (Fitzl *et al.*, 1977; Knuuttila *et al.*, 1982).

The phenyl rings in the two molecules C(71)-C(121)and C(72)-C(122) are tilted by  $32 \cdot 3(3)$  and  $26 \cdot 8(3)^{\circ}$ to the N(11), C(11), S(21) and N(12), C(12), S(22) planes, respectively.

Fig. 3(b) shows the crystal structure of modification (II). Pairs of symmetrically independent molecules are

linked by N-H···S interactions forming dimers. The distances H(12)···S(11)  $(1-x, \frac{1}{2}+y, 1-z)$  and H(11)···S(12)  $(1-x, y-\frac{1}{2}, 1-z)$  are 2.42 and 2.52 Å respectively.

#### References

- BEYER, L., HARTUNG, J. & WIDERA, R. (1984). Tetrahedron, 40, 405-412.
- CRUSE, W. B. T. (1978). Acta Cryst. B34, 2904-2906.
- DIAS, H. W. & TRUTER, M. R. (1964). Acta Cryst. 17, 937-943.
- ELCOMBE, M. M. & TAYLOR, J. C. (1968). Acta Cryst. A24, 410-420.
- FITZL, G., BEYER, L., SIELER, J., RICHTER, R., KAISER, J. & HOYER, E. (1977). Z. Anorg. Allg. Chem. 433, 237-241.
- Норе, Н. (1965). Acta Cryst. 18, 259-264.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KNUUTTILA, P., KNUUTTILA, H., HENNIG, H. & BEYER, L. (1982). Acta Chem. Scand. Ser. A, 36, 541–545.
- KUNCHUR, N. R. & TRUTER, M. R. (1958). J. Chem. Soc. pp. 2551-2557.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*78. Program for plotting crystal and molecular structures. Univ. of Cambridge, England.
- PAULING, L. (1968). Die Natur der chemischen Bindung, pp. 214–223. Weinheim: Verlag Chemie.
- PEREZ-RODRIGUEZ, M. & LOPEZ-CASTRO, A. (1969). Acta Cryst. B25, 532-540.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sieler, J., Richter, R., Braun, U., Beyer, L., Lindqvist, O. & Andersen, L. (1985). Z. Anorg. Allg. Chem. **528**, 107–116.
- TRUTER, M. R. (1960). J. Chem. Soc. pp. 997-1007.
   WALTER, W., HARTO, S. & VOSS, J. (1976). Acta Cryst. B32, 2876-2877.
- WALTER, W. & KROHN, J. (1973). Justus Liebigs Ann. Chem. pp. 476-494.

Acta Cryst. (1987). C43, 95-98

# Structure of 2,4,5,7-Tetramethyl-9,10-phenanthroquinone

## BY LING-KANG LIU\*

Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan and Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan

AND TONG-ING HO,\* CHENG-SHENG HSU AND CHEH-MING CHANG

Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan

(Received 3 June 1986; accepted 15 July 1986)

Abstract.  $C_{18}H_{16}O_2$ ,  $M_r = 264.32$ , monoclinic, I2/a, a = 19.389 (3), b = 8.708 (1), c = 17.554 (3) Å,  $\beta = 112.11$  (1)°, V = 2745.8 (8) Å<sup>3</sup>, Z = 8,  $D_x = 1.279$  g cm<sup>-3</sup>, Mo Ka,  $\lambda = 0.7093$  Å,  $\mu = 0.766$  cm<sup>-1</sup>, F(000) = 1120, T = 298 K, R = 0.046 for 1889 reflections with  $I > 2.5\sigma(I)$ . The repulsion between the two methyl groups at C(4) and C(5) and the electrostatic repulsion from the orthoquinone functionality cause a severe deviation from planarity for the phenanthroquinone skeleton. The torsional angle C(4)-C(12)-

© 1987 International Union of Crystallography

<sup>\*</sup> Authors to whom correspondence should be addressed.

C(13)–C(5) [39.9°] is the largest known in a phenanthrene derivative. Though not required crystallographically,  $C_{18}H_{16}O_2$  virtually has  $C_2$  molecular symmetry.

**Introduction.** Recent interest in studies of the stereoelectronic effect (Kirby, 1983; Deslongchamps, 1983) has turned our attention to the synthesis of compounds such as 1,3,6,8- and 2,4,5,7-tetramethylphenanthrene and the corresponding 9,10-phenanthroquinones in the hope of understanding the effect of steric hindrance at C(4) and C(5) on physical properties, *e.g.* the UV absorption, and the possible consequences for the chemistry of these compounds. The correlations between the crystal and molecular structures and the spectroscopic data are expected to be rewarding in the rationalization of this distorted aromatic system.

Experimental. The novel 2,4,5,7-tetramethyl-9,10phenanthroquinone was prepared from the oxidation of 2,4,5,7-tetramethylphenanthrene (Blackburn, Loader & Timmons, 1968) using chromic acid in acetic acid (Graebe, 1873). Recrystallization from methanol gave orange prisms, m.p. 468–469 K (dec.): ΙH  $\delta = 2 \cdot 25$  (6H, s), NMR  $(CDCl_3)$ 2.40 (6H, s), 7.33 (2H, br. s), 7.67 (2H, br. s); IR (KBr) cm<sup>-1</sup>, 1620, 1680; MS(m/e) 264 (5%, M<sup>+</sup>), 236 (28%), 221 (16%), 193 (75%), 178 (45%), 165 (28%), 51 (52%), 39 (100%); UV (hexane)  $nm(\varepsilon)$ , 220 (5800). 253 (4400), 301 (800); calculated elemental analysis C: 81.8%, H: 6.06%, found C: 81.7%, H: 6.14%.

Nonius CAD-4 diffractometer,  $2 < 2\theta < 60^\circ$ , Mo  $K\alpha$ ,  $\omega - 2\theta$  scan with speeds from  $0.9 - 6.7^\circ \text{min}^{-1}$ ,  $(0.7 + 0.35 \tan \theta)^\circ$  around maximum, h - 27 to 25, k 0to 12, l 0 to 22, 25 reflections ( $20 < 2\theta < 30^\circ$ ) used for measuring lattice constants. Data crystal size *ca*  $0.2 \times 0.3 \times 0.4$  mm. Three standard reflections (811,  $\overline{811}$  and  $\overline{811}$ ) after every 7200 s, no decay or decomposition found. 3995 unique reflections measured, 1889 observed with  $I > 2.5\sigma(I)$ . Structure solved by direct methods with MULTAN (Main, Fiske,

Fig. 1. ORTEP drawing (Johnson, 1965) of 2,4,5,7-tetramethyl-9,10-phenanthroquinone with the atomic numbering sequence.

Hull, Lessinger, Germain, Declercq & Woolfson, 1982). H atoms found in difference Fourier synthesis. No absorption correction applied. Structure refined by full-matrix least squares minimizing  $\sum w(|F_o| - |F_c|)^2$ , w from counting statistics only. Calculations carried out with anisotropic O, C, and isotropic H. Scattering factors from *International Tables for X-ray Crystallography* (1974). Final R = 0.046 and wR = 0.034. Max.  $\Delta/\sigma$  for the last cycle 0.5. Max. and min. peak heights in final difference map 0.48 and  $-0.50 \text{ e } \text{Å}^{-3}$ . Computations carried out on a VAX 780 with the NRCC package (Larson, Lee, Le Page & Gabe, 1986).

**Discussion.** An ORTEP drawing (Johnson, 1965) of the molecule is shown in Fig. 1. Final atomic coordinates are given in Table 1, bond lengths and angles in Table 2, and torsional angles in Table 3.\*

There is evidence that the two methyl groups at C(4)and C(5) cause steric repulsion. The repulsion, in turn, influences the electronic properties of the phenanthroquinone chromophore. An isomer of the title compound has been similarly prepared, namely 1,3,6,8-tetramethyl-9,10-phenanthroquinone, whose crystals are golden needles. The blue shift in UV for the title compound is indicative that this chromophore is more strained. The lower stretching frequencies for the orthoquinone functionality of the title compound, as revealed by IR, result from a loss of the planarity of phenanthrene skeleton. The molecular structure of the title compound corresponds very well to a loss of planarity. The features are best seen *via* the torsional angles.

Similar molecular structures with substituents at C(4) and C(5) all reveal a large torsional angle C(4)-C(12)-C(13)-C(5): namely decachlorophenanthrene (DCP) 27.9° (Herbstein, Kapon & Merksamer, 1976), 1,10-dichloro-3,8-dimethyl-4,7-phenanthroline (DCDMP) 20.5° (Herbstein, Kapon & Rabinovich, 1972), and 2,4,5,7-tetramethylphenanthrene (TMP) 32.7° (Ho, Hsu, Hwang & Liu, 1986). However, the torsional angle of the title compound  $(39.9^{\circ})$  is the largest known for a phenanthrene derivative. On the other hand, DCP, DCDMP and TMP have C(14)-C(9)-C(10)-C(11) torsional angles of 5.7, 11.6 and 11.0°, respectively. Nevertheless, this angle is 35.5° in the title compound. DCP, DCDMP and TMP each have a simple double bond at C(9)-C(10), which is apparently effective for a resonance through all the conjugated double bonds, as compared to the single-bond  $(sp^2-sp^2)$  character of C(9)-C(10) in the title compound.

<sup>\*</sup> Lists of structure factors, thermal parameters, H-atom coordinates, and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43254 (33 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.



The O(1)-C(9)-C(10)-O(2) torsional angle of 27.4° in the title compound is also surprisingly large. For o-benzoquinone (Macdonald & Trotter, 1973) the torsional angle for the orthoquinone functionality O-C-C-O is only 2.4°, indicative of a resonance through all conjugated double bonds and of the limited steric effect of the two nearby O atoms. It is believed that in the title compound, the 9,10-orthoquinone functionality, as a pair of dipoles, still prefers the two O atoms to point away from each other due to electrostatic repulsion. Hence, the torsional angle O(1)-C(9)-C(10)-O(2) is large.

| Table | 1. Final fractional of | coordinates of | 'non-H atoms |
|-------|------------------------|----------------|--------------|
|       | for 2,4,5,7-tetrameth  | ylphenanthrod  | quinone      |

$$B_{\rm iso}=8\pi^2/3\sum U_{ii}.$$

|       | x           | у           | z          | $B_{1so}(\dot{A}^2)$ |
|-------|-------------|-------------|------------|----------------------|
| O(1)  | 0.1667(1)   | -0.1236 (2) | 0.1297(1)  | 6.7(1)               |
| O(2)  | 0.0742 (1)  | 0.1000 (2)  | 0.0311(1)  | 5.4.(1)              |
| C(1)  | -0.0341 (2) | 0.2002 (3)  | 0.0957 (2) | 4.0 (2)              |
| C(2)  | -0.0825(1)  | 0.2458 (3)  | 0.1325 (2) | 4.2(1)               |
| C(3)  | -0.0560 (2) | 0.2432 (3)  | 0.2171 (2) | 4.4 (2)              |
| C(4)  | 0.0171(1)   | 0.2078 (3)  | 0.2671 (2) | 4.0(1)               |
| C(5)  | 0.1930(1)   | 0.2302 (3)  | 0.3452 (2) | 3.7(1)               |
| C(6)  | 0.2657 (2)  | 0.1793 (3)  | 0.3883 (2) | 4.1(1)               |
| C(7)  | 0.2973 (1)  | 0.0581 (3)  | 0.3627 (2) | 4.0(1)               |
| C(8)  | 0.2564 (2)  | -0.0095 (3) | 0.2885 (2) | 4.1 (2)              |
| C(9)  | 0.1474 (2)  | -0.0138 (3) | 0.1589 (2) | 4.1(1)               |
| C(10) | 0.0848 (1)  | 0.0900 (3)  | 0.1033 (2) | 3.8(1)               |
| C(11) | 0.0394 (1)  | 0.1638 (3)  | 0.1435(1)  | 3.5(1)               |
| C(12) | 0.0680(1)   | 0.1770 (3)  | 0.2295(1)  | 3.4(1)               |
| C(13) | 0.1489(1)   | 0.1497 (3)  | 0.2754 (1) | 3.3(1)               |
| C(14) | 0.1840(1)   | 0.0378 (3)  | 0.2446 (2) | 3.5(1)               |
| C(15) | -0.1624 (2) | 0.2863 (5)  | 0.0817 (3) | 5.8 (2)              |
| C(16) | 0.0346 (2)  | 0.1877 (6)  | 0.3577 (2) | 6.0 (2)              |
| C(17) | 0.1704 (2)  | 0.3792 (4)  | 0.3724 (2) | 5.0 (2)              |
| C(18) | 0.3761 (2)  | 0.0059 (5)  | 0.4130 (3) | 5.8 (2)              |

# Table 2. Bond lengths (Å) and angles (°) for 2,4,5,7-<br/>tetramethylphenanthroquinone

|                      |           |                      |           | Average |
|----------------------|-----------|----------------------|-----------|---------|
| O(1)-C(9)            | 1.208 (3) | O(2)-C(10)           | 1.207 (3) | 1.208   |
| C(1) - C(2)          | 1.382 (4) | C(7) - C(8)          | 1-377 (4) | 1.380   |
| C(1) - C(11)         | 1.392 (4) | C(8)-C(14)           | 1.385 (4) | 1.389   |
| C(2) - C(3)          | 1.377 (4) | C(6) - C(7)          | 1.377 (4) | 1.377   |
| C(2)-C(15)           | 1.510 (4) | C(7) - C(18)         | 1.518 (4) | 1.514   |
| C(3)-C(4)            | 1.392 (4) | C(5)-C(6)            | 1.397 (4) | 1.395   |
| C(4)-C(12)           | 1.403 (4) | C(5)-C(13)           | 1.392 (4) | 1.398   |
| C(4)-C(16)           | 1.507 (4) | C(5)-C(17)           | 1.503 (4) | 1.505   |
| C(9)-C(10)           | 1-533 (4) |                      |           |         |
| C(9)-C(14)           | 1-471 (4) | C(10)-C(11)          | 1.469 (4) | 1.470   |
| C(11)–C(12)          | 1-403 (3) | C(13)–C(14)          | 1.407 (4) | 1.405   |
| C(12)-C(13)          | 1-489 (3) |                      |           |         |
|                      |           |                      |           |         |
|                      |           |                      |           | Average |
| C(2)-C(1)-C(11)      | 120-3 (3) | C(7)-C(8)-C(14)      | 120-1 (3) | 120-2   |
| C(1)-C(2)-C(3)       | 117-1 (3) | C(6) - C(7) - C(8)   | 117-8 (3) | 117.5   |
| C(1)-C(2)-C(15)      | 121-2(3)  | C(8)–C(7)–C(18)      | 121-2 (3) | 121.2   |
| C(3) - C(2) - C(15)  | 121-6 (3) | C(6)-C(7)-C(18)      | 120-9 (3) | 121-3   |
| C(2) - C(3) - C(4)   | 124-2 (3) | C(5)–C(6)–C(7)       | 123-3 (3) | 123.8   |
| C(3)-C(4)-C(12)      | 118-4 (2) | C(6)-C(5)-C(13)      | 118-5 (3) | 118-4   |
| C(3) - C(4) - C(16)  | 117-5 (3) | C(6) - C(5) - C(17)  | 117-2 (3) | 117.4   |
| C(12)–C(4)–C(16)     | 123-8 (3) | C(13)-C(5)-C(17)     | 123-9 (3) | 123-9   |
| O(1)-C(9)-C(10)      | 119-5 (3) | O(2)-C(10)-C(9)      | 119-5 (2) | 119.5   |
| O(1)-C(9)-C(14)      | 124.7 (3) | O(2)-C(10)-C(11)     | 125-2 (3) | 125-0   |
| C(10)-C(9)-C(14)     | 115-6 (2) | C(9)-C(10)-C(11)     | 115-2 (2) | 115.4   |
| C(1)–C(11)–C(10)     | 118-2 (2) | C(8)–C(14)–C(9)      | 118.4 (2) | 118.3   |
| C(1)-C(11)-C(12)     | 122-1 (2) | C(8) - C(14) - C(13) | 121-8 (3) | 121.9   |
| C(10)-C(11)-C(12)    | 119-2 (2) | C(9)-C(14)-C(13)     | 119-2 (2) | 119-2   |
| C(4)-C(12)-C(11)     | 117.3 (2) | C(5)-C(13)-C(14)     | 117.5 (2) | 117-4   |
| C(4) - C(12) - C(13) | 124.1 (2) | C(5)-C(13)-C(12)     | 124.7 (2) | 124-4   |
| C(11)-C(12)-C(13)    | 118-5 (2) | C(12)-C(13)-C(14)    | 117-8 (2) | 118.2   |

 

 Table 3. Torsional angles (°) for 2,4,5,7-tetramethylphenanthroquinone

|                                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(6)-C(7)-C(8)-C(14) -4.2            | -4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 C(18)-C(7)-C(8)-C(14) 178.6        | 179-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 C(7)-C(8)-C(14)-C(9) 167.8         | 168-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 C(7) - C(8) - C(14) - C(13) - 3.0  | -2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(5)-C(6)-C(7)-C(8) 4.0              | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5 C(5)-C(6)-C(7)-C(18) -178.7        | -179.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ) $C(13)-C(5)-C(6)-C(7)$ 3.4         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C(17)-C(5)-C(6)-C(7) -170.0          | -170.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(6)-C(5)-C(13)-C(14) - 10.3         | -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(6)-C(5)-C(13)-C(12) 171.7          | 173-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 C(17) - C(5) - C(13) - C(14) 162.6 | 163-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C(17)-C(5)-C(13)-C(12) -15.4         | -13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3 C(14)-C(9)-C(10)-O(2) 147-8        | 148-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| O(2)-C(10)-C(11)-C(1) 24.6           | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O(2)-C(10)-C(11)-C(12)-163.4         | 166 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(9)-C(10)-C(11)-C(1) -151.8         | -153-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 C(9)-C(10)-C(11)-C(12) 20.1        | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 C(5)-C(13)-C(14)-C(8) 10.4         | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C(12)-C(13)-C(14)-C(8)-171.5         | -173.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(5)-C(13)-C(14)-C(9) -160.4         | ~161.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(12)-C(13)-C(14)-C(9) 17.6          | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| )                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C(11)-C(12)-C(13)-C(5) 143.5         | 142.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | $\begin{array}{ccccc} C(6)-C(7)-C(8)-C(14) & -4\cdot 2\\ 3 & C(18)-C(7)-C(8)-C(14) & 178\cdot 6\\ 2 & (7)-C(8)-C(14)-C(9) & 167\cdot 8\\ 3 & (7)-C(8)-C(14)-C(13) & -3\cdot 0\\ 4 & (5)-C(6)-C(7)-C(8) & 4\cdot 0\\ 5 & (5)-C(6)-C(7)-C(8) & -178\cdot 7\\ 7 & (13)-C(5)-C(6)-C(7) & 3\cdot 4\\ 4 & C(17)-C(5)-C(6)-C(7) & -170\cdot 0\\ 5 & (6)-C(5)-C(13)-C(14) & -10\cdot 3\\ 5 & (C(6)-C(5)-C(13)-C(12) & -17\cdot 4\\ 6 & (C(17)-C(5)-C(13)-C(14) & 162\cdot 6\\ 1 & (C(17)-C(5)-C(13)-C(12) & -15\cdot 4\\ 7 & C(14)-C(9)-C(10)-O(2) & 147\cdot 8\\ 7 & (C(14)-C(9)-C(11)-C(1) & 24\cdot 6\\ 1 & (C(2)-C(10)-C(11)-C(1) & 24\cdot 6\\ 1 & (C(2)-C(10)-C(11)-C(12) & -163\cdot 4\\ 5 & (C(9)-C(10)-C(11)-C(12) & 20\cdot 1\\ 1 & (C(5)-C(13)-C(14)-C(8) & 10\cdot 4\\ 1 & (C(12)-C(13)-C(14)-C(8) & -171\cdot 5\\ 1 & (C(12)-C(13)-C(14)-C(8) & -17\cdot 6\\ 1 & (C(12)-C(13)-C(14)-C(9) & 17\cdot 6\\ 1 & (C(12)-C(13)-C(14)-C(9) & 17\cdot 6\\ 1 & (C(11)-C(12)-C(13)-C(13)-C(5) & 143\cdot 5\\ 1 & (C(11)-C(12)-C(13)-C(5) & 143\cdot 5\\ 1 & (C(11)-C(12)-C(13)-C(13)-C(5) & 143\cdot 5\\ 1 & (C(11)-C(12)-C(13)-C(13)-C(5) & 143\cdot 5\\ 1 & (C(11)-C(12)-C(13)-C(13)-C(13)-C(5) & 143\cdot 5\\ 1 & (C(11)-C(12)-C(13)-C(13)-C(13)-C(5) &$ |

The overcrowdedness of the title compound also shows an elongation of the bond C(12)-C(13), *i.e.* from 1.457 Å in phenanthrene (Kay, Okaya & Cox, 1971) to 1.490 Å in the title compound. Seemingly, the same pattern follows for DCP and DCDMP as well.

The thermal parameters are such that the phenanthrene C atoms are more restricted in motion, whereas the terminal methyl C atoms and the quinone O atoms are less restricted. The thermal parameters of H atoms are also associated with two groups: the more-restricted phenanthrene H atom and the lessrestricted methyl H atom. The steric hindrance, which would tend to force the two methyl groups of C(4) and C(5) together and reduce thermal motion, could partly be released because of the 9,10 orthoquinone functionality. Hence, no abnormal thermal parameters are seen for C(16) and C(17) as well as the attached H atoms.

Though not required crystallographically, the title compound virtually has  $C_2$  molecular symmetry, not including the methyl H atoms, as revealed by structural parameters which are averaged on the basis of chemical equivalence.

Financial support from the National Science Council of the Republic of China is acknowledged. Thanks are due also to Ms M. Cheng and Mr J. Lee, the Precious Instruments Center, for the X-ray intensity data collection.

#### References

BLACKBURN, E. V., LOADER, C. E. & TIMMONS, C. J. (1968). J. Chem. Soc. C, pp. 1576–1580.

DESLONGCHAMPS, P. (1983). Stereoelectronic Effects in Organic Chemistry. Oxford: Pergamon Press.

GRAEBE, C. (1873). Ann. 167, 131-166.

- HERBSTEIN, F. H., KAPON, M. & MERKSAMER, R. (1976). Acta Cryst. B32, 2205–2210.
- HERBSTEIN, F. H., KAPON, M. & RABINOVICH, D. (1972). Isr. J. Chem. 10, 537–558.
- Ho, T. I., Hsu, C. S., HWANG, T. C. & LIU, L. K. (1986). Proc. Natl Sci. Counc. ROC A. Submitted.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.

- KAY, M. I., OKAYA, Y. & COX, D. E. (1971). Acta Cryst. B27, 26-33.
- KIRBY, A. J. (1983). The Anomeric Effect and Related Stereoelectronic Effects at Oxygen. Berlin: Springer.
- LARSON, A. C., LEE, F. L., LE PAGE, Y. & GABE, E. J. (1986). The NRC VAX Crystal Structure System. National Research Council of Canada, Ottawa.
- MACDONALD, A. L. & TROTTER, J. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 476–480.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1987). C43, 98–101

# Structure of (-)-Canadinium (+)-10-Camphorsulfonate

## By Tooru Sakai

Faculty of Science, Kobe University, Kobe 657, Japan

### Zenei Taira

Faculty of Pharmacology, Tokushima Bunri University, Tokushima 770, Japan

#### AND MIYOKO KAMIGAUCHI AND NARAO TAKAO

Kobe Women's College of Pharmacy, Kobe 658, Japan

(Received 28 May 1986; accepted 21 July 1986)

 $C_{20}H_{22}NO_4^+.C_{10}H_{15}O_4S^-, \quad M_r = 571.69,$ Abstract. orthorhombic,  $P2_12_12_1$ , a = 11.231 (2), b = 32.025 (5),  $c = 7.584 (1) \text{ Å}, \quad V = 2727.8 (10) \text{ Å}^3, \quad Z = 4, \quad D_x = 100 \text{ Å}^3$ 1.392 Mg m<sup>-3</sup>,  $\lambda$ (Mo Ka) = 0.71069 Å,  $\hat{\mu}$  = 0.1764 mm<sup>-1</sup>, F(000) = 1216, room temperature. Final R = 0.055 for 1440 unique observed reflections. The absolute configuration of (-)-canadine was obtained in relation to that of (+)-10-camphorsulfonic acid and also by use of the anomalous-dispersion effects of the S and the O atoms. In the crystal of the title compound, (-)-canadine, (-)-(13aS)-5,6,13,13a-tetrahydro-9,10dimethoxy-2,3-methylenedioxy-8H-dibenzo[a,g]quinolizine, takes a trans configuration in the quinolizidine ring. The distance between the N atom of the canadinium ion and one O atom in the sulfonate group of the camphorsulfonate ion, 2.683 Å, indicates that these two are connected by a hydrogen bond.

Introduction. (-)-Canadine, which belongs to the protoberberine-type alkaloids, was isolated from several *Corydalis* plants (Papaveraceae), *i.e. Corydalis cheilanthifolia, C. ophiocarpa* and *C. ternata,* and its structure was determined to be that of tetrahydroberberine (Manske & Holmes, 1954; Boit, 1961). Studies on the crystal-structure analysis of proto-

0108-2701/87/010098-04\$01.50

berberine-type alkaloids showed that there are a few alkaloid salts which have the B/C-cis ring-juncture configuration (Shimanouchi, Sasada, Ihara & Kametani, 1969; Shimanouchi, Sasada, Kametani & Ihara, 1970). However, there have been no detailed studies on these salts with the B/C-trans juncture configuration. (-)-Canadinium (+)-10-camphorsulfonate should be obtainable in the process of optical resolution of racemic  $(\pm)$ -canadine as a diastereomeric salt. We prepared this compound, which was, by spectroscopic studies, to have the *trans* juncture configuration, and used this to determine the crystal structure. If the crystal structure is determined, the absolute configuration of (--)-canadine could be obtained in relation to that of (+)-10-camphorsulfonic acid. Until now we have a report suggesting the absolute configuration of (-)-canadine by circular dichroism (Snatzke, Hrubek, Hruban, Horeau & Šantavý, 1970).

**Experimental.** Compound prepared by reaction of stoichiometric quantities of constituent molecules in acetic acid. Crystal specimens obtained from dimethyl sulfone solutions. Crystal  $0.1 \times 0.3 \times 0.5$  mm, thin rectangular plate. Rigaku AFC-5 four-circle diffrac-

© 1987 International Union of Crystallography