Table 3. Comparison of selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the ligand and the corresponding nickel chelate, $\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$ (Sieler et al., 1985)

	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}$		$\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$	
	(I)	(II)*	(I)	(II)
$\mathrm{S}(1)-\mathrm{C}(2)$	1.675 (6)	, 1.675 (8)	1.75 (2)	1.73 (1)
S(2)-C(1)	1.639 (6)	1.635 (8)	1.71 (2)	1.71 (1)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.408 (7)	1.430 (10)	1.29 (3)	1.34 (2)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.365 (7)	1.359 (9)	1.27 (3)	1.29 (2)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.335 (7)	1.310 (10)	1.41 (3)	1.35 (2)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	119.0 (4)	117.8 (7)	129 (2)	130 (1)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	123.3 (5)	123.5 (6)	127 (2)	127 (1)
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	123.9 (4)	123.3 (6)	134 (2)	132 (1)
* Mean value of the two independent molecules.				

As in (I), $\mathrm{C}(1)-\mathrm{S}(2)$ is about $0.04 \AA$ shorter than $\mathrm{C}(2)-\mathbf{S}(1)$ which corresponds to distances in thioureas (Kunchur \& Truter, 1958; Elcombe \& Taylor, 1968; Dias \& Truter, 1964) and thioamides (Truter, 1960; Walter, Harto \& Voss, 1976).

The $\mathrm{C}(1)-\mathrm{N}(1), \mathrm{C}(2)-\mathrm{N}(1)$ and $\mathrm{C}(2)-\mathrm{N}(2)$ bonds are again intermediate between single and double bonds. $\mathrm{C}(5)-\mathrm{C}(6)$ (mean value $1.44 \AA$) is slightly shorter and $\mathrm{N}(2)-\mathrm{C}(5)$ (mean value $1.52 \AA$) is longer than the expected values of 1.54 and $1.47 \AA$ (Pauling, 1968). Deviations of this kind are already known from N-benzoylthiourea chelates (Fitzl et al., 1977; Knuuttila et al., 1982).

The phenyl rings in the two molecules $\mathrm{C}(71)-\mathrm{C}(121)$ and $\mathrm{C}(72)-\mathrm{C}(122)$ are tilted by $32 \cdot 3(3)$ and $26 \cdot 8(3)^{\circ}$ to the $\mathrm{N}(11), \mathrm{C}(11), \mathrm{S}(21)$ and $\mathrm{N}(12), \mathrm{C}(12), \mathrm{S}(22)$ planes, respectively.

Fig. 3(b) shows the crystal structure of modification (II). Pairs of symmetrically independent molecules are
linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions forming dimers. The distances $\mathrm{H}(12) \cdots \mathrm{S}(11)\left(1-x, \frac{1}{2}+y, 1-z\right)$ and $\mathrm{H}(11) \cdots \mathrm{S}(12)\left(1-x, y-\frac{1}{2}, 1-z\right)$ are 2.42 and $2.52 \AA$ respectively.

References

Beyer, L., Hartung, J. \& Widera, R. (1984). Tetrahedron, 40, 405-412.
Cruse, W. B. T. (1978). Acta Cryst. B34, 2904-2906.
Dias, H. W. \& Truter, M. R. (1964). Acta Cryst. 17, 937-943.
Elcombe, M. M. \& Taylor, J. C. (1968). Acta Cryst. A24, 410-420.
Fitzl, G., Beyer, L., Sieler, J., Richter, R., Kaiser, J. \& Hoyer, E. (1977). Z. Anorg. Allg. Chem. 433, 237-241.
Hope, H. (1965). Acta Cryst. 18, 259-264.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Knuuttila, P., Knuuttila, H., Hennig, H. \& Beyer, L. (1982). Acta Chem. Scand. Ser. A, 36, 541-545.
Kunchur, N. R. \& Truter, M. R. (1958). J. Chem. Soc. pp. 2551-2557.
Motherwell, W. D. S. \& Clegg, W. (1978). Pluto78. Program for ploting crystal and molecular structures. Univ. of Cambridge, England.
Pauling, L. (1968). Die Natur der chemischen Bindung, pp. 214-223. Weinheim: Verlag Chemie.
Perez-Rodriguez, M. \& Lopez-Castro, A. (1969). Acta Cryst. B25, 532-540.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sieler, J., Richter, R., Braun, U., Beyer, L., Lindqvist, O. \& Andersen, L. (1985). Z. Anorg. Allg. Chem. 528, 107-116.
Truter, M. R. (1960). J. Chem. Soc. pp. 997-1007.
Walter, W., Harto, S. \& Voss, J. (1976). Acta Cryst. B32, 2876-2877.
Walter, W. \& Krohn, J. (1973). Justus Liebigs Ann. Chem. pp. 476-494.

Acta Cryst. (1987). C43, 95-98

Structure of 2,4,5,7-Tetramethyl-9,10-phenanthroquinone

By Ling-Kang Liu*
Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan and Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan

and Tong-Ing Ho,* Cheng-Sheng Hsu and Cheh-Ming Chang
Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan

(Received 3 June 1986; accepted 15 July 1986)

$$
\begin{gathered}
\text { Abstract. } \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}, M_{r}=264.32, \text { monoclinic, } I 2 / a, \\
a=19.389(3), \quad b=8.708(1), c=17 \cdot 554(3) \AA, \beta= \\
112 \cdot 11(1)^{\circ}, \quad V=2745 \cdot 8(8) \AA^{3}, \quad Z=8, \quad D_{x}= \\
1.279 \mathrm{~g} \mathrm{~cm}^{-3}, \text { Mo } K \alpha, \lambda=0.7093 \AA, \mu=0.766 \mathrm{~cm}^{-1}, \\
\text { * Authors to whom correspondence should be addressed. } \\
0108-2701 / 87 / 010095-04 \$ 01.50
\end{gathered}
$$

$F(000)=1120, T=298 \mathrm{~K}, R=0.046$ for 1889 reflections with $I>2 \cdot 5 \sigma(I)$. The repulsion between the two methyl groups at $C(4)$ and $C(5)$ and the electrostatic repulsion from the orthoquinone functionality cause a severe deviation from planarity for the phenanthroquinone skeleton. The torsional angle $C(4)-C(12)-$ c 1987 International Union of Crystallography
$\mathrm{C}(13)-\mathrm{C}(5)\left[39.9^{\circ}\right]$ is the largest known in a phenanthrene derivative. Though not required crystallographically, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$ virtually has C_{2} molecular symmetry.

Introduction. Recent interest in studies of the stereoelectronic effect (Kirby, 1983; Deslongchamps, 1983) has turned our attention to the synthesis of compounds such as $1,3,6,8$ - and 2,4,5,7-tetramethylphenanthrene and the corresponding 9,10 -phenanthroquinones in the hope of understanding the effect of steric hindrance at $\mathrm{C}(4)$ and $\mathrm{C}(5)$ on physical properties, e.g. the UV absorption, and the possible consequences for the chemistry of these compounds. The correlations between the crystal and molecular structures and the spectroscopic data are expected to be rewarding in the rationalization of this distorted aromatic system.

Experimental. The novel 2,4,5,7-tetramethyl-9,10phenanthroquinone was prepared from the oxidation of 2,4,5,7-tetramethylphenanthrene (Blackburn, Loader \& Timmons, 1968) using chromic acid in acetic acid (Graebe, 1873). Recrystallization from methanol gave orange prisms, m.p. $\quad 468-469 \mathrm{~K} \quad$ (dec.); ${ }^{1} \mathrm{H}$ NMR $\quad\left(\mathrm{CDCl}_{3}\right) \quad \delta=2.25(6 \mathrm{H}, \mathrm{s}), \quad 2.40(6 \mathrm{H}, \mathrm{s})$, 7.33 ($2 \mathrm{H}, \mathrm{br} . \mathrm{s}$), 7.67 ($2 \mathrm{H}, \mathrm{br} . \mathrm{s}$); IR (KBr) cm ${ }^{-1}, 1620$, 1680; MS $(m / e) 264$ ($5 \%, M^{+}$), 236 (28%), 221 (16%), 193 (75\%), $\quad 178$ (45%), $\quad 165$ (28%), $\quad 51$ (52\%), $39(100 \%)$; UV (hexane) $\mathrm{nm}(\varepsilon), \quad 220(5800)$, 253 (4400), 301 (800); calculated elemental analysis C: $81 \cdot 8 \%$, H: $6 \cdot 06 \%$, found C: $81 \cdot 7 \%$, H: $6 \cdot 14 \%$.

Nonius CAD-4 diffractometer, $2<2 \theta<60^{\circ}$, Mo $K \alpha, \omega-2 \theta$ scan with speeds from $0.9-6.7^{\circ} \mathrm{min}^{-1}$, $(0.7+0.35 \tan \theta)^{\circ}$ around maximum, $h-27$ to $25, k 0$ to $12, l 0$ to 22,25 reflections ($20<2 \theta<30^{\circ}$) used for measuring lattice constants. Data crystal size ca $0.2 \times 0.3 \times 0.4 \mathrm{~mm}$. Three standard reflections (811 , $\overline{8} \overline{1} \overline{1}$ and $\overline{8} 1 \overline{1}$) after every 7200 s , no decay or decomposition found. 3995 unique reflections measured, 1889 observed with $I>2 \cdot 5 \sigma(I)$. Structure solved by direct methods with MULTAN (Main, Fiske,

Fig. 1. ORTEP drawing (Johnson, 1965) of 2,4,5,7-tetramethyl9,10 -phenanthroquinone with the atomic numbering sequence.

Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). H atoms found in difference Fourier synthesis. No absorption correction applied. Structure refined by full-matrix least squares minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, w from counting statistics only. Calculations carried out with anisotropic O, C, and isotropic H. Scattering factors from International Tables for X-ray Crystallography (1974). Final $R=0.046$ and $w R=0.034$. Max. Δ / σ for the last cycle 0.5 . Max. and min. peak heights in final difference map 0.48 and $-0.50 \mathrm{e}^{\AA^{-3}}$. Computations carried out on a VAX 780 with the $N R C C$ package (Larson, Lee, Le Page \& Gabe, 1986).

Discussion. An ORTEP drawing (Johnson, 1965) of the molecule is shown in Fig. 1. Final atomic coordinates are given in Table 1, bond lengths and angles in Table 2, and torsional angles in Table 3.*

There is evidence that the two methyl groups at C(4) and $C(5)$ cause steric repulsion. The repulsion, in turn, influences the electronic properties of the phenanthroquinone chromophore. An isomer of the title compound has been similarly prepared, namely $1,3,6,8$-tetra-methyl-9,10-phenanthroquinone, whose crystals are golden needles. The blue shift in UV for the title compound is indicative that this chromophore is more strained. The lower stretching frequencies for the orthoquinone functionality of the title compound, as revealed by IR, result from a loss of the planarity of phenanthrene skeleton. The molecular structure of the title compound corresponds very well to a loss of planarity. The features are best seen via the torsional angles.

Similar molecular structures with substituents at $C(4)$ and $C(5)$ all reveal a large torsional angle $C(4)-C(12)-C(13)-C(5): ~ n a m e l y ~ d e c a c h l o r o p h e n-~$ anthrene (DCP) 27.9° (Herbstein, Kapon \& Merksamer, 1976), 1,10-dichloro-3,8-dimethyl-4,7-phenanthroline (DCDMP) 20.5° (Herbstein, Kapon \& Rabinovich, 1972), and 2,4,5,7-tetramethylphenanthrene (TMP) 32.7° (Ho, Hsu, Hwang \& Liu, 1986). However, the torsional angle of the title compound (39.9°) is the largest known for a phenanthrene derivative. On the other hand, DCP, DCDMP and TMP have $\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ torsional angles of $5.7,11.6$ and 11.0°, respectively. Nevertheless, this angle is 35.5° in the title compound. DCP, DCDMP and TMP each have a simple double bond at C(9)$\mathrm{C}(10)$, which is apparently effective for a resonance through all the conjugated double bonds, as compared to the single-bond $\left(s p^{2}-s p^{2}\right)$ character of $\mathrm{C}(9)-\mathrm{C}(10)$ in the title compound.

[^0]The $\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$ torsional angle of 27.4° in the title compound is also surprisingly large. For o-benzoquinone (Macdonald \& Trotter, 1973) the torsional angle for the orthoquinone functionality $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ is only $2 \cdot 4^{\circ}$, indicative of a resonance through all conjugated double bonds and of the limited steric effect of the two nearby \mathbf{O} atoms. It is believed that in the title compound, the 9,10 -orthoquinone functionality, as a pair of dipoles, still prefers the two O atoms to point away from each other due to electrostatic repulsion. Hence, the torsional angle $\mathrm{O}(1)-$ $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$ is large.

Table 1. Final fractional coordinates of non-H atoms for 2,4,5,7-tetramethylphenanthroquinone

	$B_{\text {iso }}=8 \pi^{2} / 3 \sum U_{i i}$.			
	x	y	z	$B_{\text {lso }}\left(\AA^{2}\right)$
O(1)	$0 \cdot 1667$ (1)	-0.1236 (2)	0.1297 (1)	$6 \cdot 7$ (1)
O(2)	0.0742 (1)	$0 \cdot 1000$ (2)	0.0311 (1)	5.4.(1)
C(1)	-0.0341 (2)	$0 \cdot 2002$ (3)	0.0957 (2)	$4 \cdot 0$ (2)
C(2)	-0.0825 (1)	$0 \cdot 2458$ (3)	$0 \cdot 1325$ (2)	$4 \cdot 2$ (1)
C(3)	-0.0560 (2)	0.2432 (3)	0.2171 (2)	4.4 (2)
C(4)	0.0171 (1)	0.2078 (3)	0.2671 (2)	$4 \cdot 0$ (1)
C(5)	0.1930 (1)	0.2302 (3)	0.3452 (2)	$3 \cdot 7$ (1)
C(6)	0.2657 (2)	0.1793 (3)	0.3883 (2)	$4 \cdot 1$ (1)
C(7)	0.2973 (1)	0.0581 (3)	0.3627 (2)	$4 \cdot 0$ (1)
C(8)	0.2564 (2)	-0.0095 (3)	0.2885 (2)	$4 \cdot 1$ (2)
C(9)	0.1474 (2)	-0.0138 (3)	0.1589 (2)	$4 \cdot 1$ (1)
C(10)	0.0848 (1)	0.0900 (3)	0.1033 (2)	$3 \cdot 8$ (1)
C(11)	0.0394 (1)	$0 \cdot 1638$ (3)	0.1435 (1)	$3 \cdot 5$ (1)
C(12)	0.0680 (1)	0.1770 (3)	0.2295 (1)	3.4 (1)
C(13)	$0 \cdot 1489$ (1)	0.1497 (3)	0.2754 (1)	$3 \cdot 3$ (1)
C(14)	0.1840 (1)	0.0378 (3)	0.2446 (2)	$3 \cdot 5$ (1)
C(15)	-0.1624 (2)	0.2863 (5)	0.0817 (3)	5.8 (2)
C(16)	0.0346 (2)	0.1877 (6)	0.3577 (2)	6.0 (2)
C(17)	0.1704 (2)	0.3792 (4)	0.3724 (2)	5.0 (2)
C(18)	0.3761 (2)	$0 \cdot 0059$ (5)	0.4130 (3)	$5 \cdot 8$ (2)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 2,4,5,7tetramethylphenanthroquinone

				Average
$\mathrm{O}(1)-\mathrm{C}(9)$	$1 \cdot 208$ (3)	$\mathrm{O}(2)-\mathrm{C}(10)$	1.207 (3)	1.208
$\mathrm{C}(1)-\mathrm{C}(2)$	1.382 (4)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.377 (4)	1.380
$\mathrm{C}(1)-\mathrm{C}(11)$	1.392 (4)	$\mathrm{C}(8)-\mathrm{C}(14)$	1.385 (4)	1.389
$\mathrm{C}(2)-\mathrm{C}(3)$	1.377 (4)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.377 (4)	1.377
$\mathrm{C}(2)-\mathrm{C}(15)$	1.510 (4)	$\mathrm{C}(7)-\mathrm{C}(18)$	1.518 (4)	1.514
$\mathrm{C}(3)-\mathrm{C}(4)$	1.392 (4)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.397 (4)	1.395
$\mathrm{C}(4)-\mathrm{C}(12)$	1.403 (4)	$\mathrm{C}(5)-\mathrm{C}(13)$	1.392 (4)	1.398
$\mathrm{C}(4)-\mathrm{C}(16)$	1.507 (4)	$\mathrm{C}(5)-\mathrm{C}(17)$	1.503 (4)	1.505
$\mathrm{C}(9)-\mathrm{C}(10)$	1.533 (4)			
$\mathrm{C}(9)-\mathrm{C}(14)$	1.471 (4)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.469 (4)	1.470
$\mathrm{C}(11)-\mathrm{C}(12)$	1.403 (3)	C(13)-C(14)	1.407 (4)	1.405
$\mathrm{C}(12)-\mathrm{C}(13)$	1.489 (3)			
				Average
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	120.3 (3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	120.1 (3)	120.2
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117.1 (3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	117.8 (3)	117.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	121.2 (3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(18)$	121.2 (3)	121.2
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	121.6 (3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(18)$	120.9 (3)	121.3
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	124.2 (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	123.3 (3)	123.8
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)$	118.4 (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)$	118.5 (3)	118.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(16)$	117.5 (3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(17)$	117.2 (3)	117.4
$\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(16)$	123.8 (3)	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(17)$	123.9 (3)	123.9
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	119.5 (3)	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	119.5 (2)	119.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	124.7 (3)	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	125.2 (3)	125.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	115.6 (2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	115.2 (2)	115.4
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	118.2 (2)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(9)$	118.4 (2)	118.3
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	122.1 (2)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	121.8 (3)	121.9
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.2 (2)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	119.2 (2)	119.2
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)$	117.3 (2)	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	117.5 (2)	117.4
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(13)$	$124 \cdot 1$ (2)	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(12)$	124.7 (2)	124.4
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118.5 (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	117.8 (2)	118.2

Table 3. Torsional angles $\left({ }^{\circ}\right)$ for 2,4,5,7-tetramethylphenanthroquinone

				Average
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-4. 1	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	-4.2	-4.2
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	179.8	C(18)-C(7)-C(8)-C(14)	178.6	179.2
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	169.2	C(7)-C(8)-C(14)-C(9)	167.8	168.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	-2.5	C(7)-C(8)-C(14)-C(13)	-3.0	-2.8
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	4.4	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	4.0	4.2
$\mathrm{C}(15)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-179.6	C(5)-C(6)-C(7)-C(18)	-178.7	-179.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)$	2.0	C(13)-C(5)-C(6)-C(7)	3.4	2.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(16)$	-171.4	$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-170 \cdot 0$	-170.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)$	-8.4	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	-10.3	-9.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(13)$	175.0	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(12)$	171.7	173.4
$\mathrm{C}(16)-\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)$	164.5	$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	162.6	163.6
$\mathrm{C}(16)-\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(13)$	-12.1	$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(12)$	-15.4	-13.8
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$	-27.4			
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	149.3	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$	147.8	148.6
C(14)-C(9)-C(10)-C(11)	-35.5			
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(8)$	20.1	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(1)$	24.6	22.4
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	-168.8	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-163.4	-166.1
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(8)$	-154.8	C(9)-C(10)-C(11)-C(1)	-151.8	-153.3
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	16.3	C(9)-C(10)-C(11)-C(12)	20.1	18.2
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(4)$	8.8	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(8)$	10.4	$9 \cdot 6$
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-174.4	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(8)$	-171.5	-173.0
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(4)$	-162.8	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	-160.4	-161.6
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	14.0	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	17.6	15.8
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(5)$	-39.9			
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$142 \cdot 1$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(5)$	143.5	142.8
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-34.5			

The overcrowdedness of the title compound also shows an elongation of the bond $\mathrm{C}(12)-\mathrm{C}(13)$, i.e. from $1.457 \AA$ in phenanthrene (Kay, Okaya \& Cox, 1971) to $1.490 \AA$ in the title compound. Seemingly, the same pattern follows for DCP and DCDMP as well.
The thermal parameters are such that the phenanthrene C atoms are more restricted in motion, whereas the terminal methyl C atoms and the quinone O atoms are less restricted. The thermal parameters of H atoms are also associated with two groups: the more-restricted phenanthrene H atom and the lessrestricted methyl H atom. The steric hindrance, which would tend to force the two methyl groups of $C(4)$ and $\mathrm{C}(5)$ together and reduce thermal motion, could partly be released because of the 9,10 orthoquinone functionality. Hence, no abnormal thermal parameters are seen for $\mathrm{C}(16)$ and $\mathrm{C}(17)$ as well as the attached H atoms.

Though not required crystallographically, the title compound virtually has C_{2} molecular symmetry, not including the methyl H atoms, as revealed by structural parameters which are averaged on the basis of chemical equivalence.

Financial support from the National Science Council of the Republic of China is acknowledged. Thanks are due also to Ms M. Cheng and Mr J. Lee, the Precious Instruments Center, for the X-ray intensity data collection.

References

Blackburn, E. V., Loader, C. E. \& Timmons, C. J. (1968). J. Chem. Soc. C, pp. 1576-1580.

Deslongchamps, P. (1983). Stereoelectronic Effects in Organic Chemistry. Oxford: Pergamon Press.
Graebe, C. (1873). Ann. 167, 131-166.
Herbstein, F. H., Kapon, M. \& Merksamer, R. (1976). Acta Cryst. B32, 2205-2210.
Herbstein, F. H., Kapon, M. \& Rabinovich, D. (1972). Isr. J. Chem. 10, 537-558.
Ho, T. I., Hsu, C. S., Hwang, T. C. \& Liu, L. K. (1986). Proc. Natl Sci. Counc. ROC A. Submitted.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.

Kay, M. I., Окауа, Y. \& Cox, D. E. (1971). Acta Cryst. B27, 26-33.
Kirby, A. J. (1983). The Anomeric Effect and Related Stereoelectronic Effects at Oxygen. Berlin: Springer.
Larson, A. C., Lee, F. L., Le Page, Y. \& Gabe, E. J. (1986). The NRC VAX Crystal Structure System. National Research Council of Canada, Ottawa.
Macdonald, A. L. \& Trotter, J. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 476-480.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Structure of (-)-Canadinium (+)-10-Camphorsulfonate

By Tooru Sakai
Faculty of Science, Kobe University, Kobe 657, Japan
Zenei Taira
Faculty of Pharmacology, Tokushima Bunri University, Tokushima 770, Japan
and Miyoko Kamigauchi and Narao Takao
Kobe Women's College of Pharmacy, Kobe 658, Japan

(Received 28 May 1986; accepted 21 July 1986)

Abstract

C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}^{+} . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{-}, \quad M_{r}=571 \cdot 69\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=11.231$ (2), $b=32.025$ (5), $c=7.584(1) \AA, \quad V=2727.8(10) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.392 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $0 \cdot 1764 \mathrm{~mm}^{-1}, F(000)=1216$, room temperature. Final $R=0.055$ for 1440 unique observed reflections. The absolute configuration of $(-)$-canadine was obtained in relation to that of $(+)-10$-camphorsulfonic acid and also by use of the anomalous-dispersion effects of the S and the O atoms. In the crystal of the title compound, $(-)$-canadine, (-)-(13aS)-5,6,13,13a-tetrahydro-9,10-dimethoxy-2,3-methylenedioxy- 8 H -dibenzo $[a, g$]quinolizine, takes a trans configuration in the quinolizidine ring. The distance between the N atom of the canadinium ion and one O atom in the sulfonate group of the camphorsulfonate ion, $2.683 \AA$, indicates that these two are connected by a hydrogen bond.

Introduction. (-)-Canadine, which belongs to the protoberberine-type alkaloids, was isolated from several Corydalis plants (Papaveraceae), i.e. Corydalis cheilanthifolia, C. ophiocarpa and C. ternata, and its structure was determined to be that of tetrahydroberberine (Manske \& Holmes, 1954; Boit, 1961). Studies on the crystal-structure analysis of proto-
berberine-type alkaloids showed that there are a few alkaloid salts which have the B / C-cis ring-juncture configuration (Shimanouchi, Sasada, Ihara \& Kametani, 1969; Shimanouchi, Sasada, Kametani \& Ihara, 1970). However, there have been no detailed studies on these salts with the B / C-trans juncture configuration. (- -Canadinium (+)-10-camphorsulfonate should be obtainable in the process of optical resolution of racemic (\pm)-canadine as a diastereomeric salt. We prepared this compound, which was, by spectroscopic studies, to have the trans juncture configuration, and used this to determine the crystal structure. If the crystal structure is determined, the absolute configuration of (-)-canadine could be obtained in relation to that of $(+)$-10-camphorsulfonic acid. Until now we have a report suggesting the absolute configuration of $(-)$-canadine by circular dichroism (Snatzke, Hrubek, Hruban, Horeau \& Šantavý, 1970).

Experimental. Compound prepared by reaction of stoichiometric quantities of constituent molecules in acetic acid. Crystal specimens obtained from dimethyl sulfone solutions. Crystal $0.1 \times 0.3 \times 0.5 \mathrm{~mm}$, thin rectangular plate. Rigaku AFC-5 four-circle diffrac-

[^0]: * Lists of structure factors, thermal parameters, H -atom coordinates, and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43254 (33 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

